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The analytical solution of a pseudo-steady Mach reflection was considered. It was 
found that the solution of the well-known perfect-gas conservation equations of a 
pseudo-steady Mach reflection - the three-shock theory - failed to accurately predict 
the angles between the incident, reflected and Mach stem shock waves. The 
disagreement between theory and experiments was not settled even when real-gas 
effects were accounted for. However, the inclusion of real-gas effects did improve the 
analytical predictions. In  order to improve the analytical model, the boundary layers 
developing on both sides of the slipstream were integrated into the analysis. Using 
these boundary layers, the displacement thickness as a function of distance along the 
slipstream from the triple point was calculated. The displacement thickness was then 
related to the angular displacement of the slipstream, as a function of that distance. 
Finally it was shown that the displacement, taken at a distance equivalent to the 
incident-shock-wave thickness, could be used to obtain computed results which agree 
with experimentally measured data. 

1. Introduction 
When a planar shock wave encounters a sharp compressive corner, such as the 

leading edge of a wedge in a shock tube, two different types of reflection can occur. 
They are regular reflection and Mach reflection. The type of reflection that will occur 
depends for a given gas on the incident-shock-wave Mach number M and the 
reflecting wedge angle Bw. 

An unsteady Mach reflection, as obtained in shock-tube experiments over straight 
wedges, is shown schematically in figure 1.  The Mach reflection consists of four 
discontinuities - the incident shock i, the reflected shock r, the Mach stem m and the 
slipstream s. These four discontinuities coincide at the triple point T. Over a plane 
wedge the triple point moves along a straight line making an angle x with the wedge 
surface. The Mach stem is usually curved. In  the case of weak shock waves it is 
concave while in the case of strong shock waves it is convex (Dewey & McMillin 
1985a, b ;  Glass 1986). 

The shock reflection process over plane wedges in shock tubes has been found by 
many experimentalists to be self-similar (Smith 1945; White 1951, 1952; Ben-Dor 
& Glass 1979; Dewey & McMillin 1985a, b). Their experimental investigations have 
clearly indicated that any point j on any of the shock waves in a given reflection, 
having a radius vector r with the tip of the wedge as origin, was transformed at a 
later time to a new point, Cr, where C is a scalar constant. This experimental 
observation means that instead of three independent variables x, y and t, the 
phenomenon is describable in terms of x/t and y l t ,  i.e. x and y may be measured 
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FIGURE 1. Schematic illustration of an unsteady Mach reflection. i, incident shock wave; r, 
reflected shock wave; m, Mach stem; s, slipstream; T, triple point; x, triple point trajectory angle; 
B,, wedge angle. 

i I 

\ 

FIGURE 2. The wave configuration of a Mach reflection from a frame of reference attached to the 
triple point T: (0)-(3), thermodynamic states; 4, angle of incidence; 0, deflection angle; i, r, m and 
s are defined in the caption of figure 1. 

relative to any point provided i t  moves with a constant velocity with respect to the 
leading edge of the wedge. 

The triple point T has been traditionally chosen as such a point for analytical study 
of the Mach reflection phenomenon. By attaching a frame of reference to the triple 
point T, the unsteady Mach reflection shown in figure 1 is transformed to a 
pseudo-steady Mach reflection (figure 22). Unlike the reflection in the laboratory 
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frame of reference (figure l) ,  the shock waves here are stationary. Thus, the incident 
i, reflected r and Mach stem m shocks can be treated using the steady flow theory. 
Assuming that at the vicinity of the triple point the shock waves are straight, the 
oblique-shock-wave conservation equations can be applied separately to the incident, 
reflected and Mach-stem shock waves. For each shock wave there are four conser- 
vation equations : conservation of mass, conservation of tangential momentum, 
conservation of normal momentum and conservation of energy. The conservation 
equation for i, r and m are (Ben-Dor 1978): 

for i (1) Po UrJ sin $0 = P, u1 sin ($0 - &I, 

for r 

and for m 

Po tan $0 = P1 tan ($0 - 4 1 9  

p ,  + po ui sin2 $, = p ,  +pl ui sin2 (4, -el), 
h, +!pi sin2 6, = h, + !p: sin2 ($, - 8,) ; 

Po tan $3 = P3 tan ($3 - 631, 
p ,  + p ,  ui sin2 $3 = p3 + p3 ui sin2 (9, - 8,), 

h, +!pi sin2 $3 = h, +$; sin2 ($3 - 03), 

where p is the density, p the static pressure, h the enthalpy, u the flow velocity, $ 
the incident angle and 8 the deflection angle. Subscripts 0, 1, 2 and 3 refer to the 
flow states as defined in figure 2. If thermodynamic equilibrium is assumed, then two 
thermodynamic properties are sufficient to define a state, e.g., p = p(p, T) ,  h = h(p, 2') 
etc. Thus, the above set of 12 equations consists of 18 variables, namely, p, ,  p , ,  p,, 
p,, T,, T,, T,, T,, u,, u,, u2, u3, $,, $,, $3, el, e2 and 03. As will be shown subsequently, 
two additional equations arise from the fact that states (2) and (3) are separated by 
a contact surface. Thus, the entire set of 14 equations contains 18 variables. In order 
to make the set of the equations solvable, four of the above-listed variables must be 
known. Two of the four required variables arise from the initial conditions; they are 
the initial pressure po and the initial temperature To. The additional two parameters 
that are usually determined prior to solving the set of equations at hand are u, and 
4,. These two parameters depend solely on the incident-shock-wave velocity ui, the 
reflecting wedge angle 8, and the triple-point trajectory angle x, through the 
following expressions : $, = 9oo-e,-x, 

U i  u, = 
cos (8,+x)'  

While ui and 8, are also known initial variables, x must be either calculated using 
the analytical method presented by Ben-Dor (1981), or alternatively measured from 
an experimental photograph. Since the analytical approach does not agree with 
experiments in the entire range of incident-shock-wave Mach numbers and reflecting 
wedge angles, it  was decided, for the sake of accuracy, to use the measured value of 
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x from the photograph. Thus, with the measured value of x and the initial values 
ui and Ow, the values of $o and uo can be calculated from the above expressions, to 
lead to a closed set of 14 equations and 14 unknown variables. 

As mentioned earlier, the two complementary equations needed to make the above 
set of equations solvable arise from the fact that the flow behind the reflected shock 
wave, state (2), is separated from the flow behind the Mach stem, state (3) (see figure 
2), by a contact surface. Since the pressures on both sides of the contact surface must 
be equal, we have 

P2 = P3. (13) 

Furthermore, if the contact region is assumed to be infinitely thin, i.e. a slipstream, 
then one obtains 

(14) e, = el - e2. 
Thus, we now have a set of 14 equations with 14 unknowns which, in principle, is 
solvable. 

In a recently conducted study the experimentally obtained angles between the 
various discontinuities were compared to those predicted analytically. The results of 
the comparison, as well as the recorded photographs, raised some serious doubts 
about the validity of the model described by (1)-(14), which is known as 'the 
three-shock theory'. The study is outlined in $2. 

2. Present study 
The experiment in question is shown in figure 3, which is a direct shadowgraph 

(also referred to as contact shadowgraph) of a pseudo-steady Mach reflection. Figure 
4 is a blow-up of the Mach reflection shown in figure 3. 

The experiment was conducted on the 4 cm x 8 cm shock tube of the Institute of 
High Speed Mechanics, Tohoku University, Sendai, Japan. The phenomenon was 
recorded using a giant pulse ruby laser. The initial conditions for the Mach reflection 
shown in figure 3 were: Mi = 2.71 +0.01,8, = 47.1", = 296 K and p ,  = 760 Torr. 
The Mach-reflection structure is clearly seen in the photograph. The triple-point 
trajectory angle as measured from the photograph is x = 3"+0.5", and the angle 
between the incident shock wave i and the oncoming flow, in a frame of reference 
attached to the triple point, is measured to be $o = 39.9" f 0.5", in total agreement 
with the relation $, = 90"-(Ow+X). 

Let us now define the following four angles: wir, the angle between the incident 
and reflected shock waves; wim, the angle between the incident and Mach-stem shock 
waves; w,,, the angle between the reflected shock and the slipstream, and w,,, the 
angle between the Mach stem and the slipstream. These four angles can be related 
to the various incidence $ and deflection 8 angles, which are defined in figure 2, in 

(15) 
the following way: 

wim = 180°+$,-$3, (16) 

wir = 180" + el - $,, 

urs = $1-629 

Oms = $3-83. 

Summing (15)-( 18) results in 

wir + Wim + w,, + = 3600 + el - e2 - 8,. 
Inserting (14) into this relation results, as expected, in 

wir + wim + wrs + w,, = 360". 
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FIGURE 3. A shadowgraph of a Mach reflection in a shock tube: Mi = 2.71, 0, = 47.1°, 
T, = 296 K and p ,  = 760 Tom. 

A computer program was written in order to solve (1)-(18) and obtain the flow 
properties and the angles between the various discontinuities in the vicinity of the 
triple point of a Mach reflection. For the initial conditions of the Mach reflection 
shown in figures 3 and 4, i.e. Mi = 2.71, #, = 39.9', T, = 296 K and p, = 760 Torr, 
the perfect-gas solution results in 

wim = 132.8'f0.7", Wir = 123.0°f1.12', w,, = 27.27'f0.58'. 

The uncertainties of these computed angles result from those in the experimentally 
measured data used as input to the calculation, i.e. p,, T,, Mi and x. 
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FIGURE 4. A blow-up of the vicinity of the triple point of the Mach reflection shown in figure 3. 

The experimental values of these angles, as measured directly from figure 4, are 

wir = 118"f I", wim = 132"f I", w,, = 32"f I". 

It can be clearly seen that the analytical prediction based on the three-shock theory 
fails to accurately predict the angles between the incident, the reflected and 
Mach-stem shock waves. While the analytical prediction of uim is about 0.8O greater 
than the corresponding measured value, and can therefore be considered as fairly 
good, the 5" discrepancies between the predicted and measured values of wir and 
w,, are far too large to be left unexplained. 

In summary, the foregoing example clearly indicates that the inaccuracies involved 



Three-shock theory for pseudo-steady Mach rejection 473 

in measuring the incideiit-shock-wave Mach number Mi and/or the incidence angle 
$, cannot account for the disagreement between theory and experiment. (Note that 
since the model assumed perfect-gas behaviour, the inaccuracy in the measurements 
of the initial temperature T, and pressure po did not play any role in the analytical 
predictions.) 

The unexplained disagreement clearly suggests that something in the model 
described by (1)-(14) is wrong. In  the following, two basic assumptions of the 
three-shock theory, (1)-( 14), will be examined. The two assumptions are : (i) the gas 
behaves as a perfect gas; and (ii) the flow is inviscid. 

Each of these assumptions is investigated separately by relaxing its constraints, 
i.e. by integrating into the three-shock theory real-gas effects for the first case and 
viscosity effects along the slipstream for the second, and then solving the governing 
equations. 

3. The three-shock theory with real-gas effects 
Ben-Dor & Glass (1979) showed that if real-gas effects are assumed to take place 

immediately behind the shock fronts, then the predictions of the real-gas model will 
start to differ from those of the perfect-gas model at  Mi > 2, due to rotational- 
vibrational relaxation. At Mi = 6 the contribution of dissociational relaxation 
becomes significant and the solution starts to depend on the initial pressure p,. 
Therefore, it can be concluded from the work of Ben-Dor & Glass (1979) that in the 
range 2 < Mi < 6 the coupling between the rotational and vibrational degrees of 
freedom might play a significant role. It should be mentioned, however, that in 
reality, even when the internal degrees of freedom are excited, they do not reach their 
thermodynamic equilibrium immediately behind the shock front, but at a certain 
distance behind the shock front which terminates the relaxation zone. Inside the 
relaxation zone the flow is in a non-equilibrium state. Hence the above assumption, 
that the flow reaches a state of vibrational and rotational equilibrium immediately 
behind the shock front, is adopted for the sake of simplicity only, and therefore the 
results should be considered only as a first approximation. 

Based on this discussion it was decided to assume that rotational and vibrational 
relaxation take place immediately behind the shock fronts. These relaxation mech- 
anisms were added to the computer code. The computer program was then used to 
solve (1)-(14) for the following initial conditions: Mi = 2.71f0.01, 8, = 47.1", 
T, = 296 f 1 K, p ,  = 760 f 1 Torr and x = 3" f 0.5". The analytical results obtained 
are 

wirn = 132.1"+0.72", wir = 117.03"f 1.57O, w,, = 29.99"&0.53". 

As shown earlier, the experimental results are 

wi,=132"fl0, mi,= l lS" f l " ,  w,,=32"+1". 

It is obvious from these results that the inclusion of rotational and vibrational 
relaxation into the model has drastically improved the agreement between theory 
and the experiment as far as wim, wir and w,, are concerned. However, w,, still differs 
by about 2" from the experimental result. The results clearly suggest that rotational 
and vibrational equilibrium must be accounted for if one is to analytically describe 
a Mach reflection, even a t  moderate incident-shock-wave Mach numbers (recall that 
a t  present Mi = 2.71). However, although the agreement between theory and the 
experiment has been tremendously improved when real-gas effects are accounted for, 
a yet unexplained disagreement still remains. 
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Slipstream 
--x -_-- 

FIGURE 5. The flow velocity profiles on both sides of the slipstream ; (a) inviscid flow ; 
(b) real flow. 

Note that for the real-gas model, small changes in the initial temperature T, and 
pressure p ,  were also investigated. Unfortunately, they also failed to explain the 
consistent gap between the analytical and experimental results. Thus, it  is evident 
from the foregoing discussion that the experimental uncertainty in measuring the 
parameters Mi, & To and p ,  cannot explain the failure of the three-shock theory to 
predict the experimental results, even when real-gas effects are accounted for. 

4. The three-shock theory with viscous effects 
As mentioned earlier, the solution of (I)-( 14) assumes that the gas is inviscid. This 

implies that the flow velocity profiles on both sides of the slipstream are as shown 
in figure 5 (a) ,  which indicates that the flow velocity is discontinuous at the slipstream. 
Above the slipstream the flow velocity is V,, and below it V,. 

However, when two parallel streams of different velocities interact, boundary 
layers develop in both streams to yield a continuous change from V, to V,. Lock 
(1950) has shown that these boundary layers could be treated 'using a method 
equivalent to that of Blasius for the boundary layer on a flat plate' (see the 
introduction to this paper). Furthermore, according to Lock (1950), Sir Geoffrey 
Taylor, in an unpublished note, has applied the von KQrmBn momentum-integral 
method to obtain a simple approximate solution. In  the following, the von Karman 
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momentum method of analysing boundary layers will be adopted, in a way similar 
to that outlined by Lock (1950). 

It should also be noted that the idea that the boundary layers that develop along 
the slipstream might modify the flow pattern sufficiently to account for the observed 
deviation was first introduced by Courant & Friedrichs (1948, p. 345). However, to 
the best of the author's knowledge this paper is the first quantitative attack on the 
problem. Momentum transfer between the flows on each side of the slipstream will 
produce a continuous flow velocity profile as shown in figure 5(b ) .  Two boundary 
layers 6,(x) and S3(z) start to grow at the triple point T (x = 0), where x is a distance 
measured along the slipstream. Outside these boundary layers the flow velocities are 
V, and V, respectively. However, inside the boundary layers the flow velocity profiles 
change continuously. In  the region above the slipstream the velocity profile inside 
the boundary layer is u 2 ( y )  and in the region below the slipstream it is u3(y+). Each 
of these two profiles reaches a value of V, on the slipstream. 

Assuming that the flow inside the boundary layers is laminar, one can use the 
following general velocity profile for u2 : 

U ,  = a y 3 + b y a + c y + d .  

With the following boundary conditions : 

au a2u 
u ( y  = 6,) = v,, u ( y  = 0 )  = v,, - ( y  = 6,) = 0 ,  7 ( y  = 0 )  = 0, 

aY 3Y 
one obtains 

The velocity profile. u3 can be obtained in a similar way, and is 

Defining 7, = V,/V, such that 0 < qz < 1 and q3 = VJV,  such that q3 > 1 and 
inserting these definitions into (21) and (22) results in 

and 

Using the definitions following (22) one can write 

7 2 -  v, 
73 v,' 
- _ -  

(24) 

If one is to use the inviscid model (1)-(14), i.e. uniform flow profiles on both sides 
of the slipstream, then the slipstream must be displaced according to the displacement 
thickness. Among the various displacement thicknesses mentioned in the literature 
(Shames 1982, p. 362), the one based on conservation of mass has been used in the 
past few years quite successfully by Hornung & Taylor (1979) and Shirouzu & Glass 
(1982), who explained the persistence of regular reflection beyond its theoretical limit, 
and by Ben-Dor et al. (1987) who investigated the transition from regular to Mach 
reflection over rough surfaces. Therefore, in the following the mass displacement 
thickness will be adopted. 

16 F L Y  181 
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The mass boundary-layer-displacement thickness is defined as the distance by 
which the boundary (over which the fluid flows, i.e. the slipstream in the present case) 
would have to be displaced if the entire flow were imagined to be frictionless and the 
same mass flow maintained at  any cross-section. 

Thus, one can still use the inviscid model described by (1)-(14)) but should account 
for an angular displacement of the slipstream. 

As a first step, the boundary-layer thickness on each side of the slipstream must 
be developed. This is done in the following section. 

5. The boundary-layer thickness 
The boundary-layer thickness on each side of the slipstream can be obtained using 

the von Karman momentum-integral technique (Shames 1982, p. 369). For the sake 
of simplicity it is assumed in the following that the flows on both sides of the 
slipstream are incompressible and that there is no pressure gradient along the 
slipstream. As will be shown subsequently, the distance along the slipstream that is 
relevant to the present analytical model is of the order of the shock-wave thickness; 
hence i t  is quite safe to assume that in such a short distance, the pressure and density 
changes are negligible. Under these assumptions, the von Karm6n momentum 
integral assumes the following form (Shames 1982, p. 370) : 

where subscript i can take the respective values 2 or 3 when representing the flows 
above or below the slipstream. The shear stress along the slipstream 7, can be 
calculated from - .  

dUi 
(7,)$ =p. -  . 

2 a Y r  yi-0 

Inserting the velocity profiles given by (23) and (24) into the above expressions finally 
results in the following expressions for the boundary-layer thickness on either side 

where Pi K x  Reis = -. 
Pi 

Note that if V i  is set to be equal to zero, i.e. ui = 0 at y = 0, (28) is reduced to the 
well-known relation for the boundary-layer thickness over a stationary flat plate 
(Shames 1982, p. 373), s 

- = 4.64Re;:. 
X 

6. The displacement thickness 
Figures 6 (a, b )  and 6(c, d )  illustrate the displacement of the slipstream for the flows 

in states (2) and (3) (see figure 2) respectively. As can be seen, the displacement 
thickness is positive for the fast flow V,, while for the slower flow V, it is negative. 

The displacement thickness in state (2) can be calculated (Shames 1982, p. 362) 
from 

J O  
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FIGURE 6. Schematic illustration of the displacement thickness: (a) the velocity profile of the viscous 
flow in state (2) over the slipstream; (a) uniform inviscid flow profile over the displaced slipstream 
in state (2) (note a,* is positive); (c) the velocity profile of the viscous flow in state (3) over the 
slipstream; and (d) uniform inviscid flow profile over the displaced slipstream in state (3) (note 8: 
is negative). 

and in state (3) from 

Inserting (23) and (24) into 

J: [u3(y+) - V,] dy+ = V, 8:. 

(29) and (30) respectively results in 

8; = $(l-q2)82, 8: = Q(q3-1,S3.  

Inserting (28) with i = 2 and 3, respectively, into the above expressions results in 

and 

but, at  any given distance x, 8; must be equal to 8:; thus, from (31) and (32) one 
obtains 

16-2 
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FIGURE 7. General dependence of the displacement thickness S* on x, and definition of two 
possible angular displacements of the slipstream. 

Using the following expressions : 

and recalling that p, = p 3  (see (13)), results in 

since (35) 

where M, a and T are respectively the Mach number, the speed of sound and the 
temperature of the flow. Inserting (35) into (34) and (25) yields 

and (37) 

The above two equations provide a means for calculating qz and q3, provided T,, 
q, M ,  and M3 are known. Note that according to Mazor, Ben-Dor & Igra (1985), 
a = 0.6487 for a diatomic gas. For a monatomic gas a = 0.76. Once q2 and v3 are 
known, the specific relations for S,*/z or 6,*/x provide a means of determining the 
angular displacement of the slipstream. 

Equations (31) and (32) indicate that even if the slipstream is straight, the 
displaced slipstream location 6* is a function of xi, as illustrated in figure 7, where 
the general dependence of S* upon x is shown. The slipstream that coincides with the 
z-axis is displaced, and assumes the shape of the curve 6* = Cd. 
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The angular displacement of the slipstream can be calculated using one of the 
following two expressions : 

E = tan-'- 

'zchar 

where xchar is a characteristic length. 
The first expression, (38), gives the slope of the tangent of the 8* curve at x = %,ha,, 

i.e. 8' in figure 7, while (39) gives the average slope of the 8* curve at x = XCha,, i.e. 
c2 in figure 7. Both of these possibilities were discussed quite extensively by Shirouzu 
& Glass (1982) and Ben-Dor et al. (1987), who concluded that (39) is the better one 
to be used. Ben-Dor et al. (1987) have further shown that xchar = E,, where I ,  is the 
thickness of the incident or Mach stem shock waves. Hence, the characteristic length 
in the flow state behind the Mach stem, i.e. in state (3), is 1,. Since the flow in state 
(2) is obtained from state (0) by passing through both the incident and the reflected 
shocks, the characteristic length of state (2) might be longer. However, since both 
states (2) and (3) are adjacent to the slipstream, it is more appropriate to use the 
shorter lengthscale. The shock-wave thickness is about tenfold the mean free path 
A, i.e. I ,  x 1OA (Glass 1986). Combining the above results in 

xchar x 10h. (40) 
Thus the angular displacement of the slipstream is calculated from 

E=tan-'bfl 2-101 . (41) 

Once the angular displacement of the slipstream 8 is known, the deflection of the flow 
through the reflected shock wave must be changed from Be to Be+€ ,  while the 
deflection of the flow through the Mach stem must be changed from 0, to Bg-e, i.e. 
the flows must be parallel to the displaced slipstream. These two flow deflection angles 
result in two new angles of incident, $! and $: which change the predicted values 
of q,, wim and w,, as calculated from (15), (16) and (17) respectively. 

It should be mentioned here that the von Karman momentum-integral technique 
was justified by comparing its results to those of Blasius (Shames 1982, p. 368). 
However, the results of Blasius arise from solving a simplified form of the Navier- 
Stokes equations (Shames 1982, $9.7). The simplified forms of the NavierStokes 
equations are known as the boundary-layer equations. Unfortunately, the simplified 
boundary-layer equations cannot be used in the vicinity of x = 0: the full Navier- 
Stokes equations should be solved there. However, because the foregoing approach 
was successful in explaining the von Neumann Paradox (Shirouzu & Glass 1982) and 
the transition from regular to Mach reflection over rough surfaces (Ben-Dor et aZ. 
1987), it was adopted in this study too. 

Therefore, one should recall that the present approach is a simplistic first-order 
approximation only. 

7. Application of the new model to a Mach reflection 
Equations (1)-(14) were solved for the following initial conditions: Mi = 2.71, 

$o = 39.9", T, = 296 K and P, = 760 Torr. The results obtained are shown in table 1. 
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State M p[TorrI m1 p[gm/cmS1 9 e 
4.231 760 296 0.1 154 x 39.9' - 
2.171 6404 697.9 0.4124 x 43.64' 26.73' 

(2) 1.537 15707 920.6 0.7667 x lo-* - 16.49' 
(3) 0.441 15707 1305.0 0.5409 x 87.16' 10.24' 

(0) 
(1) 

wir = 123.19', wim = 132.74', wrs = 27.16' 

State p[gm/(cm s)] a[cm/s] V[cm/s] 

(0) 1.801 x 35070.0 148400.0 
( 1 )  3.142 x lo-' 53860.0 116900.0 
(2) 3.7846 x 61 860.5 95079.6 
(3) 4.7463 x 73651.8 32480.5 

TABLE 1. Predictions from the analytical solution of (1 )-( 14) for the following initial conditions: 
M, = 4.231, $o = 39.9', T, = 296 K and p, = 760 Tom, perfect-gas model 

Inserting q, $, M, and M3 into (36) and (37) results in 7, = 0.4527 and 
qs = 1.3251. Inserting these values into (28), (31) and (32) leads to 

- " = 3.492(Rez,)t, 
X 

s* 
X = 0.7167(Re,,)f, 

s 
3 = 2.577(Re3,)-k, 
X 

s* 
X = 0.3142(Re3,)-t. 

(43) 

(45) 

Inserting (43) into (41) yields 

E = tan-' b . 7  167 ( " )'I. PZ QXchar 

From Glass (1986), the mean free path at sea level is about 6.6 x cm; therefore 
according to (40), x,ha, = 6.6 x lop5 cm. Inserting this value, together with those 
given in table 1 for p,, p, and V,, gives 

E = 3.63'. 

Therefore, the new flow deflection through the reflected shock wave calculated from 
O Z + E  is 16.49"+3.63' = 20.12' and the new flow deflection through the Mach-stem 
shock wave calculated from e3--E is 10.24"-3.63" = 6.61' (6, and O3 are taken from 
table 1).  

For the flow Mach number ahead of the reflected shock wave, i.e. MI = 2.171, the 
value of the angle of incidence required to deflect the flow by 20.12' is $: = 48.81'. 
For the flow Mach number ahead of the Mach stem shock wave, i.e. M = 4.231, the 
value of the angle of incidence required to deflect the flow by 6.61' is $: = 88.20'. 
Inserting these new values of 4: and $2 into (15)-( 17)  gives 

wir = 118.02", uim = 131.70", w,, = 32.32'. 
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State M p[TomI T[KI p[gm/cm31 4 e 
(0) 4.231 760.0 296.0 0.1 154 x loFa 39.9" - 

2.458 4454.9 566.0 0.3537 x 47.42' 24.64" 
(2) 1.698 11 086.4 741.7 0.6717 x - 17.61' 
(3) 0.553 1 1086.4 968.1 0.5146 x 87.95' 7.04" 

(1) 

wir = 117.32", wim = 131.95', wrs = 29.81' 

State p[gm/(cm s)] a[cm/s] V[cm/s] 

(0) 1.801 x lo-* 35070.0 148400.0 
(1) 2 . 7 4 2 ~  47990.0 116900.0 
(2) 3.290 x 54 180.0 91 990.0 
(3) 3.910 x 60910.0 33670.0 

TABLE 2. Predictions of the analytical solution of (1)-(14) for the following initial conditions: 
Mo = 4.231, #o = 39.9, T, = 296 K and p, = 760 Torr, real-gas model 

Comparing these values with those measured in the photograph, i.e. 

uir = 118"+1", uim = 132'f lo, w,, = 32"+1°, 

indicates that the analytical predictions are in excellent agreement with the 
experimental results. 

8. The three-shock theory with viscosity and real-gas effects 
It was shown earlier that the inclusion of real-gas effects into the three-shock theory 

tremendously improved the analytical prediction. Consequently, it is of interest to 
check the proposed model when real-gas effects are integrated into it. 

The results of the solution of (1)-(14) with real-gas effects are shown in table 2. 
Inserting T,, q, M, and M3 into (36) and (37) results in q, = 0.4946 and q3 = 1.3292. 
These results are quite similar to those obtained when the gas is assumed to be perfect, 
i.e. q,  = 0.4527 and q3 = 1.3251. Inserting the real-gas values of q2 and q3 into (28), 
(31) and (32) yields 

6, X = 3.424(Re2,)-;, (46) 

a,* - - - 0.6490(ReZ,)-i, 
2 

(47) 

s3* = 0.3178(Re3,)-k 
X 

Inserting (47) into (41) results in 

E = tan-' [ 0.6490 6 fi y] 
2 2 char 

which, for the data shown in table 2 and xchar = 6.6 x cm, yields 

6 = 3.34O. 

(49) 
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Therefore, the new flow deflection through the reflected shock wave (0, + 6 )  is 20.95' 
and the new flow deflection through the Mach-stem shock wave (0 , - e )  is 3.70" (0, 
and 0, are taken from table 2). 

For the flow Mach number ahead of the reflected shock wave, i.e. M I  = 2.458, the 
value of the angle of incidence required to deflect the flow by 20.95' is 4: = 44.7'. 
For the flow Mach number ahead of the Mach-stem shock wave, i.e. M, = 4.231, the 
value of the angle of incidence required to deflect the flow by 3.7' is q5f = 89'. 
Inserting these new values of 4: and q5: into (15)-( 17) results in 

uir = 120.04', wim = 130.70', w,, - - 27.09". 

These results indicate that the inclusion of real-gas effects into the boundary-layer 
analysis results in worse agreement than the perfect-gas boundary-layer analysis. 
However, since both the perfect-gas and the real-gas boundary-layer models involve 
simplifying assumptions i t  is impossible to state whether real-gas effects should or 
should not be accounted for. 

9. Transition of the boundary layers from laminar to turbulent flow 
The transition of the boundary layer from laminar to turbulent flow occurs when 

the Reynolds number Re, reaches the critical value Rezcr = 3.2 x 106-106 (Shames 
1982, p. 380), i.e. 

P z,, = (3.2 x 10s-106)-. 
PV 

Using the flow properties listed in table 1 for states (2) and (3) results in 

(z,,), = (0.166-0.519) cm, ( x , , ) ~  = (0.864-2.7) cm. 

If one assumes that the transition of the flow from laminar to turbulent inside the 
boundary layer occurs at the point where the slipstream starts to diverge rapidly and 
show the turbulent structure, then this point, as measured from the photograph 
shown in figures 3 and 4 is located 0.332 cm behind the triple point. This value falls 
well into the region predicted by (z&. Note, that once the flow inside the boundary 
layer in state (2) changes from laminar to turbulent it influences the flow inside the 
boundary layer in state (3) and forces it to transition from laminar to turbulent at  
values of Rezcr smaller than those quoted above. (For further details see Shames 
1982, p. 379.) 

10. Discussion and conclusions 
Table 3 summarizes the values obtained for qr, qm and wr, using the various 

models presented in this paper. The numbers in brackets are the differences between 
the calculated and measured values. 

It is clear from table 3 that the three-shock-theory prediction is inaccurate when 
the gas is assumed to be inviscid and perfect. However, when real-gas effects are 
accounted for, and the gas is still assumed to be inviscid, but in rotational-vibrational 
equilibrium immediately behind the shock fronts, the predictions of the three-shock 
theory are tremendously improved. 

The best agreement with the experimental results is obtained when viscosity effects 
along the slipstream are integrated into the three-shock theory and a perfect-gas 
behaviour is assumed. For this case all the predicted values are well within the range 
of the experimental accuracy. 
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Type of model 
Experimental results 
Three-shock theory for a perfect gaa 

Three-shock theory for a real gas in 
rotational-vibrational equilibrium 

Three-shock theory for a perfect gas with 
viscous effects along the slipstream 

Three-shock theory for a real gas in 
rotational-vibrational equilibrium with 
viscous effects along the slipstream 

Wir 

118'+1" 
123.19' 

( +5.19') 
117.32' 

118.02' 

120.04" 
( + 2.04') 

(-0.88') 

( + 0.02') 

Wim 

132'k 1' 
132.74' 

( + 0.74') 
131.95' 

131.70' 

130.70" 

( - 0.05') 

(-0.30') 

(- 1 .30') 

WIS 

32'If: 1' 
27.16' 

29.81' 

32.32' 
(+0.32') 

27.09' 

(- 4.84') 

(-2.19') 

(-4.91') 

TABLE 3. Comparison between the reeults of the various models for Ml = 2.71, fi0 = 39.9', 
T, = 296 K, po = 760 Torr 

Inclusion of real-gas effects into the three-shock theory together with viscosity 
effects results in a deterioration of the comparison between theory and experiment. 
The reason could be that the present real-gas model assumes rotational-vibrational 
equilibrium immediately behind the shock fronts, while the flow is known to have 
a relaxation zone before it reaches its equilibrium stage. 

The present study clearly indicates that if one wishes to accurately predict the 
angles between the various shock waves of a pseudo-steady Mach reflection, one 
should account for viscosity effects along the slipstream, as well as real-gas effects. 

Viscosity effects are included by calculating the boundary layers on both sides of 
the slipstream as a function of the distance along the slipstream from the triple point, 
and using the displacement-thickness technique to obtain the angular displacement 
of the slipstream. This angular displacement results in &.new orientation of the 
various shock waves and the slipstream. However, as mentioned earlier the proposed 
model should be considered as a first approximation only, for the full set of the 
Naviedtokes equations should be solved in order to obtain an exact solution. 
Hopefully, the proposed model will prove useful to others who may take up the 
idea and develop a more accurate one. 

Finally it should be mentioned that Henderson (1964) showed that (1)-(14) can 
be reduced to a simple polynomial of order 10, with the pressure ratio ps /po  as the 
polynomial variable. The polynomial coefficients were taken to be functions of the 
specific-heat-capacity ratio y ,  the flow Mach number in state (0)  No, and the pressure 
ratio across the incident shock wave p,/po. Although a polynomial of degree ten yields 
ten mathematical roots, Henderson (1964) showed that, from simple physical 
considerations and the possibility of double roots, seven out of the ten roots can be 
discarded. This implies that the three-shock theory for a perfect inviscid gas does not 
yield a unique solution. This feature has not been removed by either of the two 
proposed modifications of the three-shock theory. 

I would like to thank Professor H. Hornung for his suggestion to use the 
boundary-layer-displacement-thickness technique in order to resolve the disagree- 
ment between theory and experiments. I am also thankful to Professor K. Takayama 
for supplying me with the experimental records. 
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